
Geometric Modeling
Assignment sheet #12
 “Marching Cubes/Squares”

(due July 25th/July 27th 2012 during the interviews)

Silke Jansen, Ruxandra Lasowski,
Art Tevs, Michael Wand

(1) 2D Isosurface reconstruction [5 + 4 + (2 Bonus) points]

In this exercise you will write a routine to reconstruct the isosurface of a given implicit function.

a. Create a new experiment and put a button to load an image blob.bmp from the disk. You

can interpret the color channel 0 of the loaded points as implicit function value. Add a

button which reconstruct an isosurface for a given threshold value τ using 2D version of

marching cubes algorithm, also known as marching squares. The number of used cells

should be equal to the number of pixels in the image. Work with squared images only.

Hint: It is ok to split every edge of the cell in the middle.

b. Same as (a) however perform now a correct linear interpolation for the computed

contours within the cell. You should split the cell’s edge not in the middle but depending

on the implicit function values of cell’s vertices and τ.

c. Same as (a), however let user specify the reconstruction resolution. Hence the user

should be able to set the amount of cells in x and y directions used for marching squares

approach. Use linear interpolation when sampling the implicit function in each cell.

 Extracted isoline for τ=0.7

(2) 3D Isosurface reconstruction [5 + 4 Points]

In this exercise we will write a method to reconstruct the isosurface of a 3D implicit function, i.e.

volume. As a source for our 3D volume data, we will use the surface of revolution from the last

practical assignment sheet. You can use the sor.cpp file on the webpage which provides a method to

generate fixed surface of revolution in three dimensions. A three dimensional volume containing the

surface of revolution can be created by splatting a Gaussian function centralized on each point. This

will create some kind of a blurry volumetric representation of the object.

a. Create a new 3D experiment. Add a button which splats a Gaussian function into the 3D

volume for every point of the surface of revolution. Let user specify the size of the

volume d and the σ of the Gaussian function. Assume that resolution and sigma are

equal in each dimension.

Hint: You can debug the volume by rendering a small point/line in each volume cell

colored by the Gaussian distribution.

Hint: The performance of the splatting is in worst case cubic, so be patient.

b. Add a button which performs the isosurface reconstruction. For this use the method

MarchingCubes3D::triangulate(…), found in math/MarchingCubes3D.h.

Add reconstructed triangles to the viewer. Experiment with different sigma and

resolution levels.

Hint: Take a look into ExampleExperimentMarchingCubes to see how the method is

used.

Surface of revolution found in sor.cpp Visualized volume of the surface

(left) σ =0.5, d=16, iso=0.7 (center) σ =0.1, d=32, iso=0.15, (right) σ =0.035, d=64,
iso=0.1

