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(1) 2D Isosurface reconstruction  [5 + 4 + (2 Bonus) points] 

In this exercise you will write a routine to reconstruct the isosurface of a given implicit function. 

a. Create a new experiment and put a button to load an image blob.bmp from the disk. You 

can interpret the color channel 0 of the loaded points as implicit function value. Add a 

button which reconstruct an isosurface for a given threshold value τ using 2D version of 

marching cubes algorithm, also known as marching squares.  The number of used cells 

should be equal to the number of pixels in the image. Work with squared images only. 

Hint: It is ok to split every edge of the cell in the middle. 

b. Same as (a) however perform now a correct linear interpolation for the computed 

contours within the cell. You should split the cell’s edge not in the middle but depending 

on the implicit function values of cell’s vertices and τ. 

 

c. Same as (a), however let user specify the reconstruction resolution. Hence the user 

should be able to set the amount of cells in x and y directions used for marching squares 

approach. Use linear interpolation when sampling the implicit function in each cell.  

 

 

 

 
 

 
 

 

            Extracted isoline for τ=0.7 



(2) 3D Isosurface reconstruction  [5 + 4 Points] 

 

In this exercise we will write a method to reconstruct the isosurface of a 3D implicit function, i.e. 

volume. As a source for our 3D volume data, we will use the surface of revolution from the last 

practical assignment sheet. You can use the sor.cpp file on the webpage which provides a method to 

generate fixed surface of revolution in three dimensions. A three dimensional volume containing the 

surface of revolution can be created by splatting a Gaussian function centralized on each point. This 

will create some kind of a blurry volumetric representation of the object. 

a. Create a new 3D experiment. Add a button which splats a Gaussian function into the 3D 

volume for every point of the surface of revolution. Let user specify the size of the 

volume d and the σ of the Gaussian function. Assume that resolution and sigma are 

equal in each dimension. 

Hint: You can debug the volume by rendering a small point/line in each volume cell 

colored by the Gaussian distribution.  

Hint: The performance of the splatting is in worst case cubic, so be patient. 

 

b. Add a button which performs the isosurface reconstruction. For this use the method 

MarchingCubes3D::triangulate(…), found in math/MarchingCubes3D.h. 

Add reconstructed triangles to the viewer. Experiment with different sigma and 

resolution levels. 

Hint: Take a look into ExampleExperimentMarchingCubes to see how the method is 

used. 

 

Surface of revolution found in sor.cpp Visualized volume of the surface 

(left) σ =0.5, d=16, iso=0.7 (center) σ =0.1, d=32, iso=0.15, (right) σ =0.035, d=64, 
iso=0.1 


